MySQL数据优化-多层索引 目录 一.多层索引 1.创建 2.设置索引的名称 3.from_arrays( )-from_tuples() 4.笛卡儿积方式 二.多层索引操作 1.Series 2.DataFrame 3.交换索引 4.索引排序 5.索引堆叠 6.取消堆叠 一.多层索引 1.创建 环境:Jupyter import numpy as np import pandas as
目录
- 一、多层索引
- 1.创建
- 2.设置索引的名称
- 3.from_arrays( )-from_tuples()
- 4.笛卡儿积方式
- 二、多层索引操作
- 1.Series
- 2.DataFrame
- 3.交换索引
- 4.索引排序
- 5.索引堆叠
- 6.取消堆叠
一、多层索引
1.创建
环境:Jupyter
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
['一季度','二季度','三季度','四季度']],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
display(a)
2.设置索引的名称
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
['一季度','二季度','三季度','四季度']],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
a.columns.names=['大类','小类']
display(a)
3.from_arrays( )-from_tuples()
import numpy as np
import pandas as pd
index=pd.MultiIndex.from_arrays([['上半年','上半年','下半年','下半年'],['一季度','二季度','三季度','四季度']])
columns=pd.MultiIndex.from_tuples([('蔬菜','胡萝卜'),('蔬菜','白菜'),('肉类','牛肉'),('肉类','猪肉')])
a=pd.DataFrame(np.random.random(size=(4,4)),index=index,columns=columns)
display(a)
4.笛卡儿积方式
from_product() 局限性较大
import pandas as pd
index = pd.MultiIndex.from_product([['上半年','下半年'],['蔬菜','肉类']])
a=pd.DataFrame(np.random.random(size=(4,4)),index=index)
display(a)
二、多层索引操作
1.Series
import pandas as pd
a=pd.Series([1,2,3,4],index=[['a','a','b','b'],['c','d','e','f']])
print(a)
print('---------------------')
print(a.loc['a'])
print('---------------------')
print(a.loc['a','c'])
import pandas as pd
a=pd.Series([1,2,3,4],index=[['a','a','b','b'],['c','d','e','f']])
print(a)
print('---------------------')
print(a.iloc[0])
print('---------------------')
print(a.loc['a':'b'])
print('---------------------')
print(a.iloc[0:2])
2.DataFrame
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
['一季度','二季度','三季度','四季度']],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
print(a)
print('--------------------')
print(a.loc['上半年','二季度'])
print('--------------------')
print(a.iloc[0])
3.交换索引
swaplevel( )
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
['一季度','二季度','三季度','四季度']],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
print(a)
print('--------------------')
print(a.swaplevel('年度','季度'))
4.索引排序
sort_index( )
level
:指定根据哪一层进行排序,默认为最层inplace
:是否修改原数据。默认为False
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
[1,3,2,4]],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
print(a)
print('--------------------')
print(a.sort_index())
print('--------------------')
print(a.sort_index(level=1))
5.索引堆叠
stack( )
将指定层级的列转换成行
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
[1,3,2,4]],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
print(a.stack(0))
print('--------------------')
print(a.stack(-1))
6.取消堆叠
unstack( )
将指定层级的行转换成列
fill_value
:指定填充值。
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
[1,3,2,4]],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
a=a.stack(0)
print(a)
print('--------------------')
print(a.unstack(-1))
import numpy as np
import pandas as pd
a=pd.DataFrame(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
[1,3,2,4]],
columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
a=a.stack(0)
print(a)
print('--------------------')
print(a.unstack(0,fill_value='0'))
到此这篇关于MySQL数据优化-多层索引的文章就介绍到这了,更多相关数据优化-多层索引内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
织梦狗教程
本文标题为:MySQL数据优化-多层索引


基础教程推荐
猜你喜欢
- Python爬虫爬取属于自己的地铁线路图 2023-08-05
- 使用Pycharm创建一个Django项目的超详细图文教程 2022-09-02
- 云服务器Ubuntu更改默认python版本 2023-09-03
- windows下面使用多版本Python安装指定版本的虚拟环境 2023-09-04
- 远程和Ubuntu服务器进行Socket通信,使用python和C#(准备篇) 2023-09-05
- linux 安装 python3 2023-09-03
- 创建python虚拟环境(在ubuntu16.04中) 2023-09-04
- python验证多组数据之间有无显著差异 2023-08-08
- Python+OpenCV实战之实现文档扫描 2022-10-20
- MySQL数据优化-多层索引 2023-08-11