这篇文章介绍了PostgreSQL实现按年、月、日、周、时、分、秒分组统计的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
按年查询
select to_char(date::DATE, 'YYYY') as year,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by year order by year
按月查询
select to_char(date::DATE, 'YYYY-MM') as month,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by month order by month
按周查询
select to_char(date::DATE-(extract(dow from date::TIMESTAMP)-1||'day')::interval, 'YYYY-mm-dd') week,
sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by week order by week
按天查询
select to_char(date::DATE, 'YYYY-MM-DD') as day,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by day order by day
按小时查询
select to_char(date::DATE, 'YYYY-MM-DD HH24') as hour,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by hour order by hour
按分钟查询
select to_char(date::DATE, 'YYYY-MM-DD HH24:MI ') as minute,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by minute order by minute
按秒查询
select to_char(date::DATE, 'YYYY-MM-DD HH24:MI:SS ') as second,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by second order by second
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程学习网。
织梦狗教程
本文标题为:PostgreSQL实现按年、月、日、周、时、分、秒的分组统计


基础教程推荐
猜你喜欢
- Mariadb数据库主从复制同步配置过程实例 2023-07-25
- Java程序员从笨鸟到菜鸟(五十三) 分布式之 Redis 2023-09-11
- redis乐观锁与悲观锁的实战 2023-07-13
- Windows10系统中Oracle完全卸载正确步骤 2023-07-24
- Python安装第三方库的方法(pip/conda、easy_install、setup.py) 2023-07-28
- redis 数据库 2023-09-13
- oracle19c卸载教程的超详细教程 2023-07-23
- SQL Server如何设置用户只能访问特定数据库和访问特定表或视图 2023-07-29
- Python常见库matplotlib学习笔记之画图中各个模块的含义及修改方法 2023-07-27
- oracle数据库排序后如何获取第一条数据 2023-07-24