Difference in plotting with different matplotlib versions(不同 matplotlib 版本的绘图差异)
问题描述
A colleague of mine handed me a script that is used to collect data from a database and plot it. When I used the script myself, the plots do not look the same, and it has to do with the version of Matplotlib.
The script that does the plotting of the data is quite short:
import matplotlib.pyplot as plt
import csv
import os
from dateutil import parser
def plot(outputDir,plotsDir,FS):
allfiles = os.listdir(outputDir)
flist = []
for f in allfiles:
if 'csv' in f.lower(): flist.append(f)
for f in flist:
with open(outputDir + '/' + f, 'rt') as ff:
data = list(csv.reader(ff,delimiter=FS))
values = [i[2] for i in data[1::]]
values = ['NaN' if v is '' else v for v in values]
time = [parser.parse(i[1]) for i in data[1::]]
plt.xlabel('Time_[UTC]')
plt.plot(time, values)
plt.xticks(rotation=40)
if os.path.isdir(plotsDir) != 1:
os.mkdir(plotsDir, 777)
plt.savefig('{}/{}_Data.png'.format(plotsDir, f[:-4]), bbox_inches='tight', dpi=160)
plt.clf()
outputdir = 'C:/Users/matthijsk/Documents/Test'
plotsdir = outputdir + '/plots'
fs = ','
plot(outputdir, plotsdir, fs)
When I run it using Matplotlib version 2.1.0, my image looks like this: When I run it using Matplotlib version 2.0.2, it looks the way it is supposed to:
The file the script is reading looks like this:
stationNo,dtg(UTC),TT_[°C],source_TT,quality_TT
10381,2017-01-01 00:00:00,3.0,ob,na
10381,2017-01-01 01:00:00,3.0,ob,na
10381,2017-01-01 02:00:00,2.4,ob,na
10381,2017-01-01 03:00:00,2.5,ob,na
10381,2017-01-01 04:00:00,2.5,ob,na
10381,2017-01-01 05:00:00,2.3,ob,na
10381,2017-01-01 06:00:00,1.9,ob,na
10381,2017-01-01 07:00:00,1.0,ob,na
10381,2017-01-01 08:00:00,0.1,ob,na
10381,2017-01-01 09:00:00,0.9,ob,na
Can anyone explain me what was changed in Matplotlib that caused this? And apparently I'm doing something wrong with the plotting that is causing this. Can anyone notice a mistake? I've already tried using
values = [float(value) if value.isnumeric() else None for value in values]
But that didn't solve it. Note: I'd rather not use any non-standard packages (like Pandas) since it's quite a hassle to get approvement to install such packages.
The data is read in as strings. In matplotlib 2.0 those were automatically converted to floating point numbers such that they can be plotted.
In matplotlib 2.1, categorical plots have been introduced. This now allows for something like
plt.plot(["apple", "banana", "cherry"], [2,1,3])
While this is of course great for certain applications, it breaks the previous option of plotting strings that are convertable to floats. I guess this if fine, it just gives the user the responsibility to do the conversion himself.
In this case you would want to do this conversion like
values = [None if v is '' else float(v) for v in values]
In case you already have a numpy array: np.array(values).astype(float)
In general, one can use numpy.loadtxt
to read files into float arrays. If the file contains dates, usage of a converter as in reading a comma-delimited file with a date object and a float with Python would be possible.
Another option to read in text files would be pandas.read_csv
.
这篇关于不同 matplotlib 版本的绘图差异的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:不同 matplotlib 版本的绘图差异


基础教程推荐
- Kivy 使用 opencv.调整图像大小 2022-01-01
- kivy 应用程序中的一个简单网页作为小部件 2022-01-01
- 比较两个文本文件以找出差异并将它们输出到新的文本文件 2022-01-01
- Python,确定字符串是否应转换为 Int 或 Float 2022-01-01
- 在 Python 中将货币解析为数字 2022-01-01
- 对多索引数据帧的列进行排序 2022-01-01
- Python 中是否有任何支持将长字符串转储为块文字或折叠块的 yaml 库? 2022-01-01
- matplotlib 设置 yaxis 标签大小 2022-01-01
- 在 Django Admin 中使用内联 OneToOneField 2022-01-01
- 究竟什么是“容器"?在蟒蛇?(以及所有的 python 容器类型是什么?) 2022-01-01