Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
本文介绍了PANAS-基于列对行进行分组,并将NaN替换为非空值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试基于目标GROUP-BY";列在我的数据框上使用字符串创建一些聚合。
假设我有以下4列数据帧:
我要基于列";col1";对所有行进行分组,在此情况下,使用非NULL值进行分组。
所需输出如下:
我还尝试使用正常:
import pandas as pd
from tabulate import tabulate
df = pd.DataFrame({'Col1': ['A', 'B', 'A'],
'Col2': ['X', 'Z', 'X'],
'Col3': ['Y', 'D', ''],
'Col4': ['', 'E', 'V'],})
print(tabulate(df, headers='keys', tablefmt='psql'))
df2 = df.groupby(['Col1'])
print(tabulate(df2, headers='keys', tablefmt='psql'))
但它不对NaN值进行分组.
如何执行此操作?
谢谢!
推荐答案
如果可能,只需使用GroupBy.first针对每个组的第一个非缺失值提出问题:
df = pd.DataFrame({'Col1': ['A', 'B', 'A'],
'Col2': ['X', 'Z', 'X'],
'Col3': ['Y', 'D', np.nan],
'Col4': [np.nan, 'E', 'V'],})
df2 = df.groupby(['Col1'], as_index=False).first()
print (df2)
Col1 Col2 Col3 Col4
0 A X Y V
1 B Z D E
这篇关于PANAS-基于列对行进行分组,并将NaN替换为非空值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
织梦狗教程
本文标题为:PANAS-基于列对行进行分组,并将NaN替换为非空值
基础教程推荐
猜你喜欢
- 比较两个文本文件以找出差异并将它们输出到新的文本文件 2022-01-01
- matplotlib 设置 yaxis 标签大小 2022-01-01
- 在 Python 中将货币解析为数字 2022-01-01
- 在 Django Admin 中使用内联 OneToOneField 2022-01-01
- Kivy 使用 opencv.调整图像大小 2022-01-01
- Python,确定字符串是否应转换为 Int 或 Float 2022-01-01
- 究竟什么是“容器"?在蟒蛇?(以及所有的 python 容器类型是什么?) 2022-01-01
- 对多索引数据帧的列进行排序 2022-01-01
- Python 中是否有任何支持将长字符串转储为块文字或折叠块的 yaml 库? 2022-01-01
- kivy 应用程序中的一个简单网页作为小部件 2022-01-01
