Can I use AutoRegression modelling for signal denoising?(我可以使用自回归模型进行信号去噪吗?)
本文介绍了我可以使用自回归模型进行信号去噪吗?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
如下所示,我的任务是使用AR建模来去除噪声信号中的伪影。假设我有原始数据中的ECG或EMG。在IEEE上,我发现这可以通过小波变换、巴特沃斯滤波器或经验模式分解来实现。https://www.kaggle.com/residentmario/denoising-algorithms#Machine-learning-models
原始肌电:
我到底应该如何处理自动回归模型?据我目前了解,它是用来预测数据的。
推荐答案
是的,这是据我目前了解,它用于预测数据。
AR(p)模型的常见情况;但为了预测,应该估计它的参数,并根据您提供给它的观测进行预测。因此,您可以拥有所谓的适配值,并将它们用作手头信号的去噪版本。这是因为AR(p)是这样的:
y_t = phi_1 * y_{t-1} + phi_2 * y_{t-2} + ... + phi_p * y_{t-p} + e_t
其中phi_j是要估计的AR参数,e_t被假定为具有一定方差的白噪声。您可以将此e_t视为基础信号顶部的噪声,因此拟合的值是某种程度上的去噪版本。
在软件实施之前,我们应该注意AR(p)是对广义平稳序列进行建模,因此如果存在非平稳行为(例如趋势/季节性),则应该先显式删除它(例如差异),或者隐式删除(例如ARI(p, d)建模)。
这是一个故意发出噪音的信号:
下面是AR(2)模型的拟合值:
这是我从使用AR模型进行去噪的理解;假设模型中的e_t分量代表噪声,因此拟合值给出了去噪&q;版本。
至于编码部分:AR(p)模型与Python库匹配的方式有很多种,但最方便的可能是通过statsmodels.tsa.ar_model.AutoReg:
from statsmodels.tsa.ar_model import AutoReg
model = AutoReg(your_data, lags=p)
result = model.fit()
fitted_values = result.fittedvalues
决定AR(p)的顺序完全是另一回事,但一种快速的方法是查看数据的PACF图,看看在哪个延迟之后它会消失,例如
这将指示AR(2)模型。
这篇关于我可以使用自回归模型进行信号去噪吗?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
织梦狗教程
本文标题为:我可以使用自回归模型进行信号去噪吗?
基础教程推荐
猜你喜欢
- 在 Django Admin 中使用内联 OneToOneField 2022-01-01
- Python,确定字符串是否应转换为 Int 或 Float 2022-01-01
- Python 中是否有任何支持将长字符串转储为块文字或折叠块的 yaml 库? 2022-01-01
- 对多索引数据帧的列进行排序 2022-01-01
- 在 Python 中将货币解析为数字 2022-01-01
- 究竟什么是“容器"?在蟒蛇?(以及所有的 python 容器类型是什么?) 2022-01-01
- matplotlib 设置 yaxis 标签大小 2022-01-01
- Kivy 使用 opencv.调整图像大小 2022-01-01
- kivy 应用程序中的一个简单网页作为小部件 2022-01-01
- 比较两个文本文件以找出差异并将它们输出到新的文本文件 2022-01-01
