Python: reduce precision pandas timestamp dataframe(Python:降低精度 pandas 时间戳数据帧)
问题描述
您好,我有以下数据框
df =
Record_ID Time
94704 2014-03-10 07:19:19.647342
94705 2014-03-10 07:21:44.479363
94706 2014-03-10 07:21:45.479581
94707 2014-03-10 07:21:54.481588
94708 2014-03-10 07:21:55.481804
有可能有以下吗?
df1 =
Record_ID Time
94704 2014-03-10 07:19:19
94705 2014-03-10 07:21:44
94706 2014-03-10 07:21:45
94707 2014-03-10 07:21:54
94708 2014-03-10 07:21:55
推荐答案
你可以转换底层 datetime64[ns] 值使用 astype 转换为 datetime64[s] 值:
You could convert the underlying datetime64[ns] values to datetime64[s] values using astype:
In [11]: df['Time'] = df['Time'].astype('datetime64[s]')
In [12]: df
Out[12]:
Record_ID Time
0 94704 2014-03-10 07:19:19
1 94705 2014-03-10 07:21:44
2 94706 2014-03-10 07:21:45
3 94707 2014-03-10 07:21:54
4 94708 2014-03-10 07:21:55
请注意,由于 Pandas 系列和 DataFrames 将所有日期时间值存储为 datetime64[ns] 这些 datetime64[s] 值会自动转换回 datetime64[ns],因此最终结果仍存储为 datetime64[ns] 值,但对 astype 的调用会导致秒的小数部分被删除.
Note that since Pandas Series and DataFrames store all datetime values as datetime64[ns] these datetime64[s] values are automatically converted back to datetime64[ns], so the end result is still stored as datetime64[ns] values, but the call to astype causes the fractional part of the seconds to be removed.
如果您希望有一个 datetime64[s] 值的 NumPy 数组,您可以使用 df['Time'].values.astype('datetime64[s]')代码>.
If you wish to have a NumPy array of datetime64[s] values, you could use df['Time'].values.astype('datetime64[s]').
这篇关于Python:降低精度 pandas 时间戳数据帧的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:Python:降低精度 pandas 时间戳数据帧
基础教程推荐
- Python 中是否有任何支持将长字符串转储为块文字或折叠块的 yaml 库? 2022-01-01
- 在 Django Admin 中使用内联 OneToOneField 2022-01-01
- 究竟什么是“容器"?在蟒蛇?(以及所有的 python 容器类型是什么?) 2022-01-01
- kivy 应用程序中的一个简单网页作为小部件 2022-01-01
- 对多索引数据帧的列进行排序 2022-01-01
- Python,确定字符串是否应转换为 Int 或 Float 2022-01-01
- matplotlib 设置 yaxis 标签大小 2022-01-01
- 比较两个文本文件以找出差异并将它们输出到新的文本文件 2022-01-01
- 在 Python 中将货币解析为数字 2022-01-01
- Kivy 使用 opencv.调整图像大小 2022-01-01
