PyTorch: access weights of a specific module in nn.Sequential()(PyTorch:nn.Sequential() 中特定模块的访问权重)
本文介绍了PyTorch:nn.Sequential() 中特定模块的访问权重的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
当我在 PyTorch 中使用预定义模块时,我通常可以相当轻松地访问其权重.但是,如果我先将模块包装在 nn.Sequential() 中,我该如何访问它们?r.g:
When I use a pre-defined module in PyTorch, I can typically access its weights fairly easily. However, how do I access them if I wrapped the module in nn.Sequential() first? r.g:
class My_Model_1(nn.Module):
def __init__(self,D_in,D_out):
super(My_Model_1, self).__init__()
self.layer = nn.Linear(D_in,D_out)
def forward(self,x):
out = self.layer(x)
return out
class My_Model_2(nn.Module):
def __init__(self,D_in,D_out):
super(My_Model_2, self).__init__()
self.layer = nn.Sequential(nn.Linear(D_in,D_out))
def forward(self,x):
out = self.layer(x)
return out
model_1 = My_Model_1(10,10)
print(model_1.layer.weight)
model_2 = My_Model_2(10,10)
我现在如何打印重量?model_2.layer.0.weight 不起作用.
How do I print the weights now?
model_2.layer.0.weight doesn't work.
推荐答案
来自 PyTorch 论坛,这是推荐的方式:
From the PyTorch forum, this is the recommended way:
model_2.layer[0].weight
这篇关于PyTorch:nn.Sequential() 中特定模块的访问权重的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
织梦狗教程
本文标题为:PyTorch:nn.Sequential() 中特定模块的访问权重
基础教程推荐
猜你喜欢
- 比较两个文本文件以找出差异并将它们输出到新的文本文件 2022-01-01
- 对多索引数据帧的列进行排序 2022-01-01
- Python,确定字符串是否应转换为 Int 或 Float 2022-01-01
- 在 Django Admin 中使用内联 OneToOneField 2022-01-01
- kivy 应用程序中的一个简单网页作为小部件 2022-01-01
- Kivy 使用 opencv.调整图像大小 2022-01-01
- 在 Python 中将货币解析为数字 2022-01-01
- 究竟什么是“容器"?在蟒蛇?(以及所有的 python 容器类型是什么?) 2022-01-01
- Python 中是否有任何支持将长字符串转储为块文字或折叠块的 yaml 库? 2022-01-01
- matplotlib 设置 yaxis 标签大小 2022-01-01
