Output and Broadcast shape mismatch in MNIST, torchvision(MNIST、torchvision 中的输出和广播形状不匹配)
本文介绍了MNIST、torchvision 中的输出和广播形状不匹配的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
在 Torchvision 中使用 MNIST 数据集时出现以下错误
I am getting following error when using MNIST dataset in Torchvision
RuntimeError: output with shape [1, 28, 28] doesn't match the broadcast shape [3, 28, 28]
这是我的代码:
import torch
from torchvision import datasets, transforms
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
images, labels = next(iter(trainloader))
推荐答案
错误是由于数据集上的颜色vs灰度,数据集是灰度的.
The error is due to color vs grayscale on the dataset, the dataset is grayscale.
我通过将转换更改为
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
这篇关于MNIST、torchvision 中的输出和广播形状不匹配的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
织梦狗教程
本文标题为:MNIST、torchvision 中的输出和广播形状不匹配
基础教程推荐
猜你喜欢
- Python 中是否有任何支持将长字符串转储为块文字或折叠块的 yaml 库? 2022-01-01
- 在 Django Admin 中使用内联 OneToOneField 2022-01-01
- kivy 应用程序中的一个简单网页作为小部件 2022-01-01
- matplotlib 设置 yaxis 标签大小 2022-01-01
- Python,确定字符串是否应转换为 Int 或 Float 2022-01-01
- 比较两个文本文件以找出差异并将它们输出到新的文本文件 2022-01-01
- 对多索引数据帧的列进行排序 2022-01-01
- 究竟什么是“容器"?在蟒蛇?(以及所有的 python 容器类型是什么?) 2022-01-01
- 在 Python 中将货币解析为数字 2022-01-01
- Kivy 使用 opencv.调整图像大小 2022-01-01
