How to use opencv copyTo() function?(如何使用 opencv copyTo() 函数?)
问题描述
我已阅读
请注意,在掩码数组中填充了一个额外的维度,以便可以广播.
I have read through the documentation for copyTo() but am still confused on how this function would be applied to the following code. This anwer states that we can use the copyTo function instead of 255-x. How would this function be applied in this case? I would appreciate a code snippet.
# Compute the gradient map of the image
def doLap(image):
# YOU SHOULD TUNE THESE VALUES TO SUIT YOUR NEEDS
kernel_size = 5 # Size of the laplacian window
blur_size = 5 # How big of a kernal to use for the gaussian blur
# Generally, keeping these two values the same or very close works well
# Also, odd numbers, please...
blurred = cv2.GaussianBlur(image, (blur_size,blur_size), 0)
return cv2.Laplacian(blurred, cv2.CV_64F, ksize=kernel_size)
#
# This routine finds the points of best focus in all images and produces a merged result...
#
def focus_stack(unimages):
images = align_images(unimages)
print "Computing the laplacian of the blurred images"
laps = []
for i in range(len(images)):
print "Lap {}".format(i)
laps.append(doLap(cv2.cvtColor(images[i],cv2.COLOR_BGR2GRAY)))
laps = np.asarray(laps)
print "Shape of array of laplacians = {}".format(laps.shape)
output = np.zeros(shape=images[0].shape, dtype=images[0].dtype)
abs_laps = np.absolute(laps)
maxima = abs_laps.max(axis=0)
bool_mask = abs_laps == maxima
mask = bool_mask.astype(np.uint8)
for i in range(0,len(images)):
output = cv2.bitwise_not(images[i],output, mask=mask[i])
return 255-output
Sorry that I kind of misled you there. Although it works nicely in C++, I cannot find the binding in Python. You can, however, use numpy.copyto function.
Here is a small demo that shows that both method (bitwise_not and copyto) produce identical result.
import cv2
import numpy as np
# Create two images
im1 = np.zeros((100, 100, 3), np.uint8)
im1[:] = (255, 0, 0)
im2 = np.zeros((100, 100, 3), np.uint8)
im2[:] = (0, 255, 0)
# Generate a random mask
ran = np.random.randint(0, 2, (100, 100), np.uint8)
# List of images and masks
images = [im1, im2]
mask = [ran, 1-ran]
not_output = np.zeros((100, 100, 3), np.uint8)
copy_output = np.zeros((100, 100, 3), np.uint8)
for i in range(0, len(images)):
# Using the 'NOT' way
not_output = cv2.bitwise_not(images[i], not_output, mask=mask[i])
# Using the copyto way
np.copyto(copy_output, images[i], where=mask[i][:, :, None].astype(bool))
cv2.imwrite('not.png', 255 - not_output)
cv2.imwrite('copy.png', copy_output)
Note that an extra dimension was padded to the mask array so that it can be broadcasted.
这篇关于如何使用 opencv copyTo() 函数?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:如何使用 opencv copyTo() 函数?
基础教程推荐
- 究竟什么是“容器"?在蟒蛇?(以及所有的 python 容器类型是什么?) 2022-01-01
- 比较两个文本文件以找出差异并将它们输出到新的文本文件 2022-01-01
- matplotlib 设置 yaxis 标签大小 2022-01-01
- Kivy 使用 opencv.调整图像大小 2022-01-01
- 在 Django Admin 中使用内联 OneToOneField 2022-01-01
- 在 Python 中将货币解析为数字 2022-01-01
- 对多索引数据帧的列进行排序 2022-01-01
- Python,确定字符串是否应转换为 Int 或 Float 2022-01-01
- Python 中是否有任何支持将长字符串转储为块文字或折叠块的 yaml 库? 2022-01-01
- kivy 应用程序中的一个简单网页作为小部件 2022-01-01
