Python: Generate random time series data with trends (e.g. cyclical, exponentially decaying etc)(Python:生成具有趋势的随机时间序列数据(例如周期性、指数衰减等))
问题描述
我正在尝试生成一些随机时间序列,其趋势包括周期性(例如销售)、指数下降(例如 Facebook 帖子上的点赞数)、指数增加(例如比特币价格)、普遍增加(股票行情)等.我可以生成一般递增/递减的时间序列,如下
I am trying to generate some random time series with trends like cyclical (e.g. sales), exponentially decreasing (e.g. facebook likes on a post), exponentially increasing (e.g. bitcoin prices), generally increasing (stock tickers) etc. I can generate generally increasing/decreasing time series with the following
import numpy as np
import pandas as pd
from numpy import sqrt
import matplotlib.pyplot as plt
vol = .030
lag = 300
df = pd.DataFrame(np.random.randn(100000) * sqrt(vol) * sqrt(1 / 252.)).cumsum()
plt.plot(df[0].tolist())
plt.show()
但我不知道如何产生周期性趋势或指数增长或下降趋势.有没有办法做到这一点 ?
But I don't know how to generate cyclical trends or exponentially increasing or decreasing trends. Is there a way to do this ?
推荐答案
你可能想要评估 TimeSynth代码>
You may want to evaluate TimeSynth
TimeSynth 是一个开源库,用于为*模型测试*生成合成时间序列.该库可以生成规则和不规则时间序列.该架构允许用户将不同的*信号*与不同的架构匹配,从而允许要生成的大量信号.下面列出了可用的 *signals* 和 *noise* 类型."
这篇关于Python:生成具有趋势的随机时间序列数据(例如周期性、指数衰减等)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:Python:生成具有趋势的随机时间序列数据(例如周期
基础教程推荐
- 对多索引数据帧的列进行排序 2022-01-01
- 在 Django Admin 中使用内联 OneToOneField 2022-01-01
- matplotlib 设置 yaxis 标签大小 2022-01-01
- Python,确定字符串是否应转换为 Int 或 Float 2022-01-01
- 究竟什么是“容器"?在蟒蛇?(以及所有的 python 容器类型是什么?) 2022-01-01
- 比较两个文本文件以找出差异并将它们输出到新的文本文件 2022-01-01
- 在 Python 中将货币解析为数字 2022-01-01
- Python 中是否有任何支持将长字符串转储为块文字或折叠块的 yaml 库? 2022-01-01
- kivy 应用程序中的一个简单网页作为小部件 2022-01-01
- Kivy 使用 opencv.调整图像大小 2022-01-01
