Java 8 nested loops with streams amp; performance(Java 8 嵌套循环与流 amp;表现)
问题描述
In order to practise the Java 8 streams I tried converting the following nested loop to the Java 8 stream API. It calculates the largest digit sum of a^b (a,b < 100) and takes ~0.135s on my Core i5 760.
public static int digitSum(BigInteger x)
{
int sum = 0;
for(char c: x.toString().toCharArray()) {sum+=Integer.valueOf(c+"");}
return sum;
}
@Test public void solve()
{
int max = 0;
for(int i=1;i<100;i++)
for(int j=1;j<100;j++)
max = Math.max(max,digitSum(BigInteger.valueOf(i).pow(j)));
System.out.println(max);
}
My solution, which I expected to be faster because of the paralellism actually took 0.25s (0.19s without the parallel()):
int max = IntStream.range(1,100).parallel()
.map(i -> IntStream.range(1, 100)
.map(j->digitSum(BigInteger.valueOf(i).pow(j)))
.max().getAsInt()).max().getAsInt();
My questions
- did I do the conversion right or is there a better way to convert nested loops to stream calculations?
- why is the stream variant so much slower than the old one?
- why did the parallel() statement actually increased the time from 0.19s to 0.25s?
I know that microbenchmarks are fragile and parallelism is only worth it for big problems but for a CPU, even 0.1s is an eternity, right?
Update
I measure with the Junit 4 framework in Eclipse Kepler (it shows the time taken for executing a test).
My results for a,b<1000 instead of 100:
- traditional loop 186s
- sequential stream 193s
- parallel stream 55s
Update 2
Replacing sum+=Integer.valueOf(c+""); with sum+= c - '0'; (thanks Peter!) shaved off 10 whole seconds of the parallel method, bringing it to 45s. Didn't expect such a big performance impact!
Also, reducing the parallelism to the number of CPU cores (4 in my case) didn't do much as it reduced the time only to 44.8s (yes, it adds a and b=0 but I think this won't impact the performance much):
int max = IntStream.range(0, 3).parallel().
.map(m -> IntStream.range(0,250)
.map(i -> IntStream.range(1, 1000)
.map(j->.digitSum(BigInteger.valueOf(250*m+i).pow(j)))
.max().getAsInt()).max().getAsInt()).max().getAsInt();
I have created a quick and dirty micro benchmark based on your code. The results are:
loop: 3192
lambda: 3140
lambda parallel: 868
So the loop and lambda are equivalent and the parallel stream significantly improves the performance. I suspect your results are unreliable due to your benchmarking methodology.
public static void main(String[] args) {
int sum = 0;
//warmup
for (int i = 0; i < 100; i++) {
solve();
solveLambda();
solveLambdaParallel();
}
{
long start = System.nanoTime();
for (int i = 0; i < 100; i++) {
sum += solve();
}
long end = System.nanoTime();
System.out.println("loop: " + (end - start) / 1_000_000);
}
{
long start = System.nanoTime();
for (int i = 0; i < 100; i++) {
sum += solveLambda();
}
long end = System.nanoTime();
System.out.println("lambda: " + (end - start) / 1_000_000);
}
{
long start = System.nanoTime();
for (int i = 0; i < 100; i++) {
sum += solveLambdaParallel();
}
long end = System.nanoTime();
System.out.println("lambda parallel : " + (end - start) / 1_000_000);
}
System.out.println(sum);
}
public static int digitSum(BigInteger x) {
int sum = 0;
for (char c : x.toString().toCharArray()) {
sum += Integer.valueOf(c + "");
}
return sum;
}
public static int solve() {
int max = 0;
for (int i = 1; i < 100; i++) {
for (int j = 1; j < 100; j++) {
max = Math.max(max, digitSum(BigInteger.valueOf(i).pow(j)));
}
}
return max;
}
public static int solveLambda() {
return IntStream.range(1, 100)
.map(i -> IntStream.range(1, 100).map(j -> digitSum(BigInteger.valueOf(i).pow(j))).max().getAsInt())
.max().getAsInt();
}
public static int solveLambdaParallel() {
return IntStream.range(1, 100)
.parallel()
.map(i -> IntStream.range(1, 100).map(j -> digitSum(BigInteger.valueOf(i).pow(j))).max().getAsInt())
.max().getAsInt();
}
I have also run it with jmh which is more reliable than manual tests. The results are consistent with above (micro seconds per call):
Benchmark Mode Mean Units
c.a.p.SO21968918.solve avgt 32367.592 us/op
c.a.p.SO21968918.solveLambda avgt 31423.123 us/op
c.a.p.SO21968918.solveLambdaParallel avgt 8125.600 us/op
这篇关于Java 8 嵌套循环与流 &表现的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:Java 8 嵌套循环与流 &表现
基础教程推荐
- 问题http://apache.org/xml/features/xinclude测试日志4j 2 2022-01-01
- 无法复制:“比较方法违反了它的一般约定!" 2022-01-01
- RabbitMQ:消息保持“未确认"; 2022-01-01
- 使用堆栈算法进行括号/括号匹配 2022-01-01
- REST Web 服务返回 415 - 不支持的媒体类型 2022-01-01
- 修改 void 函数的输入参数,然后读取 2022-01-01
- Struts2 URL 无法访问 2022-01-01
- Spring AOP错误无法懒惰地为此建议构建thisJoinPoin 2022-09-13
- 如何对 Java Hashmap 中的值求和 2022-01-01
- 存储 20 位数字的数据类型 2022-01-01
