Numpy append: Automatically cast an array of the wrong dimension(Numpy追加:自动转换错误维度的数组)
问题描述
is there a way to do the following without an if clause?
I'm reading a set of netcdf files with pupynere and want to build an array with numpy append. Sometimes the input data is multi-dimensional (see variable "a" below), sometimes one dimensional ("b"), but the number of elements in the first dimension is always the same ("9" in the example below).
> import numpy as np
> a = np.arange(27).reshape(3,9)
> b = np.arange(9)
> a.shape
(3, 9)
> b.shape
(9,)
this works as expected:
> np.append(a,a, axis=0)
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8],
[ 9, 10, 11, 12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23, 24, 25, 26],
[ 0, 1, 2, 3, 4, 5, 6, 7, 8],
[ 9, 10, 11, 12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23, 24, 25, 26]])
but, appending b does not work so elegantly:
> np.append(a,b, axis=0)
ValueError: arrays must have same number of dimensions
The problem with append is (from the numpy manual)
"When axis is specified, values must have the correct shape."
I'd have to cast first in order to get the right result.
> np.append(a,b.reshape(1,9), axis=0)
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8],
[ 9, 10, 11, 12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23, 24, 25, 26],
[ 0, 1, 2, 3, 4, 5, 6, 7, 8]])
So, in my file reading loop, I'm currently using an if clause like this:
for i in [a, b]:
if np.size(i.shape) == 2:
result = np.append(result, i, axis=0)
else:
result = np.append(result, i.reshape(1,9), axis=0)
Is there a way to append "a" and "b" without the if statement?
EDIT: While @Sven answered the original question perfectly (using np.atleast_2d()
), he (and others) pointed out that the code is inefficient. In an answer below, I combined their suggestions and replaces my original code. It should be much more efficient now. Thanks.
You can use numpy.atleast_2d()
:
result = np.append(result, np.atleast_2d(i), axis=0)
That said, note that the repeated use of numpy.append()
is a very inefficient way to build a NumPy array -- it has to be reallocated in every step. If at all possible, preallocate the array with the desired final size and populate it afterwards using slicing.
这篇关于Numpy追加:自动转换错误维度的数组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:Numpy追加:自动转换错误维度的数组


基础教程推荐
- Python,确定字符串是否应转换为 Int 或 Float 2022-01-01
- kivy 应用程序中的一个简单网页作为小部件 2022-01-01
- Python 中是否有任何支持将长字符串转储为块文字或折叠块的 yaml 库? 2022-01-01
- 在 Django Admin 中使用内联 OneToOneField 2022-01-01
- 对多索引数据帧的列进行排序 2022-01-01
- 在 Python 中将货币解析为数字 2022-01-01
- 比较两个文本文件以找出差异并将它们输出到新的文本文件 2022-01-01
- matplotlib 设置 yaxis 标签大小 2022-01-01
- 究竟什么是“容器"?在蟒蛇?(以及所有的 python 容器类型是什么?) 2022-01-01
- Kivy 使用 opencv.调整图像大小 2022-01-01